
DDC
| 632 |
Tác giả CN
| Huỳnh, Thanh Hải |
Nhan đề
| Phát triển ứng dụng dự đoán bệnh lá cây dựa trên mô hình học sâu : Đề án Thạc sĩ Công nghệ Thông tin; Mã ngành:8480201 / Huỳnh Thanh Hải; Nguyễn Kim Quốc, Hà Minh Tân hướng dẫn |
Thông tin xuất bản
| Tp.Hồ Chí Minh : Đại học Nguyễn Tất Thành, 2025 |
Mô tả vật lý
| x, 82 tr. : hình ảnh ; 29 cm. |
Tóm tắt
| Đề tài hướng đến việc phát triển một ứng dụng dự đoán bệnh lá cây dựa trên mô hình học sâu không chỉ đáp ứng nhu cầu cấp thiết của thực tiễn sản xuất nông nghiệp mà còn góp phần thúc đẩy quá trình chuyển đổi số, tiến tới nền nông nghiệp thông minh và bền vững. Nghiên cứu hướng đến việc xác định mô hình học sâu hiệu quả nhất trong nhiệm vụ nhận diện bệnh trên lá khoai tây, tập trung vào ba lớp nhãn gồm: Healthy, Early Blight và Late Blight. Các mô hình sẽ được huấn luyện và đánh giá trên nền tảng Google Colab, nhằm đảm bảo tính khả thi và khả năng ứng dụng thực tế. Tiến hành huấn luyện và đánh giá bốn kiến trúc học sâu phổ biến hiện nay gồm DenseNet121, ResNet50, MobileNetV3 và VGG16 trên tập dữ liệu hình ảnh lá khoai tây. So sánh hiệu suất của các mô hình dựa trên các tiêu chí: độ chính xác (Accuracy), F1-score, thời gian huấn luyện và tốc độ dự đoán. Xây dựng một giao diện sử dụng qua Google Colab thân thiện với người dùng, cho phép tải ảnh và nhận kết quả dự đoán theo thời gian thực. Đề xuất hướng mở rộng mô hình sang các loại cây trồng khác, hướng đến việc phát triển một hệ thống chẩn đoán bệnh cây trồng đa năng, có tính ứng dụng cao trong sản xuất nông nghiệp |
Từ khóa tự do
| Bệnh lá cây |
Từ khóa tự do
| Dự đoán bệnh |
Từ khóa tự do
| Mô hình học sâu |
Từ khóa tự do
| Ứng dụng |
Khoa
| Khoa Công nghệ Thông tin |
Tác giả(bs) CN
| Nguyễn, Kim Quốc |
Tác giả(bs) CN
| Hà, Minh Tân |
Địa chỉ
| 300Q12_Kho Luận án, luận văn(1): 099384 |
|
000
| 00000nam#a2200000u##4500 |
---|
001 | 56187 |
---|
002 | 3 |
---|
004 | E8032A24-6320-4B04-8571-4EC08C8862DB |
---|
005 | 202508110937 |
---|
008 | 250714s2025 vm vie |
---|
009 | 1 0 |
---|
039 | |a20250811093726|bbacntp|c20250807145104|dbacntp|y20250714110402|zbacntp |
---|
040 | |aNTT |
---|
041 | |avie |
---|
044 | |avm |
---|
082 | |a632|bH987 |
---|
100 | |aHuỳnh, Thanh Hải |
---|
245 | |aPhát triển ứng dụng dự đoán bệnh lá cây dựa trên mô hình học sâu : |bĐề án Thạc sĩ Công nghệ Thông tin; Mã ngành:8480201 / |cHuỳnh Thanh Hải; Nguyễn Kim Quốc, Hà Minh Tân hướng dẫn |
---|
260 | |aTp.Hồ Chí Minh : |bĐại học Nguyễn Tất Thành, |c2025 |
---|
300 | |ax, 82 tr. : |bhình ảnh ; |c29 cm. |
---|
502 | |aThư mục: tr. 81- 82 |
---|
520 | |aĐề tài hướng đến việc phát triển một ứng dụng dự đoán bệnh lá cây dựa trên mô hình học sâu không chỉ đáp ứng nhu cầu cấp thiết của thực tiễn sản xuất nông nghiệp mà còn góp phần thúc đẩy quá trình chuyển đổi số, tiến tới nền nông nghiệp thông minh và bền vững. Nghiên cứu hướng đến việc xác định mô hình học sâu hiệu quả nhất trong nhiệm vụ nhận diện bệnh trên lá khoai tây, tập trung vào ba lớp nhãn gồm: Healthy, Early Blight và Late Blight. Các mô hình sẽ được huấn luyện và đánh giá trên nền tảng Google Colab, nhằm đảm bảo tính khả thi và khả năng ứng dụng thực tế. Tiến hành huấn luyện và đánh giá bốn kiến trúc học sâu phổ biến hiện nay gồm DenseNet121, ResNet50, MobileNetV3 và VGG16 trên tập dữ liệu hình ảnh lá khoai tây. So sánh hiệu suất của các mô hình dựa trên các tiêu chí: độ chính xác (Accuracy), F1-score, thời gian huấn luyện và tốc độ dự đoán. Xây dựng một giao diện sử dụng qua Google Colab thân thiện với người dùng, cho phép tải ảnh và nhận kết quả dự đoán theo thời gian thực. Đề xuất hướng mở rộng mô hình sang các loại cây trồng khác, hướng đến việc phát triển một hệ thống chẩn đoán bệnh cây trồng đa năng, có tính ứng dụng cao trong sản xuất nông nghiệp |
---|
541 | |aNộp lưu chiểu |
---|
653 | |aBệnh lá cây |
---|
653 | |aDự đoán bệnh |
---|
653 | |aMô hình học sâu |
---|
653 | |aỨng dụng |
---|
690 | |aKhoa Công nghệ Thông tin |
---|
691 | |aCông nghệ thông tin |
---|
700 | |aNguyễn, Kim Quốc|cTS.|eHướng dẫn |
---|
700 | |aHà, Minh Tân|cTS.|eHướng dẫn |
---|
852 | |a300|bQ12_Kho Luận án, luận văn|j(1): 099384 |
---|
856 | 1|uhttp://elib.ntt.edu.vn/documentdata01/3 luanvanluanan/anhbiasach_2025/56187_phattrienungdungdudoanbenhlacayduatrenmohinhhocsauthumbimage.jpg |
---|
890 | |a1|b0|c0|d0 |
---|
| |
Dòng |
Mã vạch |
Nơi lưu |
S.gọi Cục bộ |
Phân loại |
Bản sao |
Tình trạng |
Thành phần |
Đặt chỗ |
1
|
099384
|
Q12_Kho Luận án, luận văn
|
632 H987
|
Sách mượn tại chỗ
|
1
|
|
|
|
Không có liên kết tài liệu số nào
|
|
|
|