DDC
| 005 |
Tác giả CN
| Tran, Huy Duong |
Nhan đề
| Mining top-k frequent sequential pattern in item Interval extended sequence database / Tran Huy Duong, Nguyen Truong Thang, Vu Duc Thi, Tran Thế Anh |
Mô tả vật lý
| 16 p. |
Tóm tắt
| Frequent sequential pattern mining in item interval extended sequence database (ỉSDB) has been one of the interesting tasks in recent years. Unlike classic frequent sequential pattern mining. The pattern mining in ISDB also consider the item interval between successive items thus it may extract more meaningful
sequential patterns in real life. Most previous frequent sequential pattern mining in ISDB algorithms needs a minimum support threshold (min sup) to perform the mining . However, it’s not easy for use to provide an appropriate threshold in practice. The too high min sup value will lead to missing valuable patterns. while the too low min sup value may generate too many useless patterns. To address this problem we propose an algorithm: Top KWFP — top K weighted frequent sequential pattern mining in item interval extended sequence database. Our algorithm doesn't needs to provide a fixed min sup value. This min sup value will dynamically raise during the mining process.
|
Từ khóa tự do
| Cơ sở dữ liệu chuỗi mở rộng |
Từ khóa tự do
| Item interval |
Từ khóa tự do
| Sequential pattern |
Tác giả(bs) CN
| Nguyen, Truong Thang |
Tác giả(bs) CN
| Tran, The Anh |
Tác giả(bs) CN
| Vu, Duc Thi |
Nguồn trích
| Tạp chí Tin học và Điều khiển học = Journal of Computer Science And Cybernetics 2018Pages 249 - 263
Số: 03
Tập: 34 |
|
000
| 00000nab#a2200000ui#4500 |
---|
001 | 21646 |
---|
002 | 9 |
---|
004 | F8A35A19-B354-427D-8AB5-1EC7DB4885DD |
---|
005 | 202006151024 |
---|
008 | 081223s vm| vie |
---|
009 | 1 0 |
---|
039 | |y20200615102451|zbacntp |
---|
082 | |a005 |
---|
100 | |aTran, Huy Duong |
---|
245 | |aMining top-k frequent sequential pattern in item Interval extended sequence database / |cTran Huy Duong, Nguyen Truong Thang, Vu Duc Thi, Tran Thế Anh |
---|
300 | |a16 p. |
---|
520 | |aFrequent sequential pattern mining in item interval extended sequence database (ỉSDB) has been one of the interesting tasks in recent years. Unlike classic frequent sequential pattern mining. The pattern mining in ISDB also consider the item interval between successive items thus it may extract more meaningful
sequential patterns in real life. Most previous frequent sequential pattern mining in ISDB algorithms needs a minimum support threshold (min sup) to perform the mining . However, it’s not easy for use to provide an appropriate threshold in practice. The too high min sup value will lead to missing valuable patterns. while the too low min sup value may generate too many useless patterns. To address this problem we propose an algorithm: Top KWFP — top K weighted frequent sequential pattern mining in item interval extended sequence database. Our algorithm doesn't needs to provide a fixed min sup value. This min sup value will dynamically raise during the mining process.
|
---|
653 | |aCơ sở dữ liệu chuỗi mở rộng |
---|
653 | |aItem interval |
---|
653 | |aSequential pattern |
---|
700 | |aNguyen, Truong Thang |
---|
700 | |aTran, The Anh |
---|
700 | |aVu, Duc Thi |
---|
773 | |tTạp chí Tin học và Điều khiển học = Journal of Computer Science And Cybernetics |d2018|gPages 249 - 263|v34|i03 |
---|
890 | |c0|a0|b0|d0 |
---|
| |
Không tìm thấy biểu ghi nào
Không có liên kết tài liệu số nào
|
|
|
|