
ISBN
| 9783319500164 |
DDC
| 006.312 |
Tác giả CN
| Igual, Laura |
Nhan đề
| Introduction to data science : a Python approach to concepts, techniques and applications / Laura Igual; Santi Seguí |
Thông tin xuất bản
| Cham, Switzerland : Springer, 2017 |
Mô tả vật lý
| 227 pages. : illustrations |
Tùng thư
| Undergraduate topics in computer science. |
Tóm tắt
| This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website<This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses. Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Assistant Professor at the same institution. |
Thuật ngữ chủ đề
| Mathematical statistics |
Thuật ngữ chủ đề
| Artificial intelligence |
Thuật ngữ chủ đề
| Quantitative research |
Thuật ngữ chủ đề
| Python (Computer program language) |
Từ khóa tự do
| Data mining |
Từ khóa tự do
| Computer science |
Từ khóa tự do
| Statistics |
Từ khóa tự do
| Pattern perception |
Khoa
| Khoa Công nghệ Thông tin |
Khoa
| Khoa Quản trị Kinh doanh |
Tác giả(bs) CN
| Seguí, Santi |
Địa chỉ
| Thư Viện Đại học Nguyễn Tất Thành |
|
000
| 00000nam#a2200000u##4500 |
---|
001 | 21297 |
---|
002 | 2 |
---|
004 | 94794B7D-5D00-45DB-B64B-FCE93A83820C |
---|
005 | 202405071353 |
---|
008 | 200521s2017 sz eng |
---|
009 | 1 0 |
---|
020 | |a9783319500164 |
---|
039 | |a20240507135356|btainguyendientu|c20220413111702|dnghiepvu|y20200521113224|znghiepvu |
---|
040 | |aNTT |
---|
041 | |aeng |
---|
044 | |asz |
---|
082 | |a006.312|bI249|223 |
---|
100 | |aIgual, Laura |
---|
245 | |aIntroduction to data science : |ba Python approach to concepts, techniques and applications / |cLaura Igual; Santi Seguí |
---|
260 | |aCham, Switzerland : |bSpringer, |c2017 |
---|
300 | |a227 pages. : |billustrations |
---|
490 | |aUndergraduate topics in computer science. |
---|
504 | |aIncludes bibliographical references and index |
---|
520 | |aThis accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: Provides numerous practical case studies using real-world data throughout the book Supports understanding through hands-on experience of solving data science problems using Python Describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data Provides supplementary code resources and data at an associated website<This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses. Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Assistant Professor at the same institution. |
---|
541 | |aSpringer |
---|
650 | |aMathematical statistics |
---|
650 | |aArtificial intelligence |
---|
650 | |aQuantitative research |
---|
650 | |aPython (Computer program language) |
---|
653 | |aData mining |
---|
653 | |aComputer science |
---|
653 | |aStatistics |
---|
653 | |aPattern perception |
---|
690 | |aKhoa Công nghệ Thông tin |
---|
690 | |aKhoa Quản trị Kinh doanh |
---|
691 | |aCông nghệ thông tin |
---|
691 | |aThương mại điện tử |
---|
700 | |aSeguí, Santi |
---|
852 | |aThư Viện Đại học Nguyễn Tất Thành |
---|
856 | 1|uhttp://elib.ntt.edu.vn/documentdata01/2 tailieuthamkhao/000 tinhocthongtin/anhbiasach/21297_introductiontodatascience_kthumbimage.jpg |
---|
890 | |c1|a0|b0|d2 |
---|
| |
Không tìm thấy biểu ghi nào
|
|
|
|