Dòng
|
Nội dung
|
1
|
1. An Application Of Feature Selection For The Fuzzy Rule Based Classifier Design With The Order Based Semantics Of Linguistic Terms For High—Dimensional Datasets / Pham Dinh Phong // Tạp chí Tin học và Điều khiển học = Journal of Computer Science And Cybernetics . - 2015. - P. 171-184. - ISSN:
14 p. Ký hiệu phân loại (DDC): 005 This paper presents an approach to tackle the high-dimensional dataset problem for the hedge algebras based classification method proposed in N. C. Ho, D.T. Pedrycz, D. T. Long, and T. T. Son. “A genetic design of linguistic terms for fuzzy rule based classifiers." International Journal of Approximate Reasoning, vol. 54, no. 1. pp. 1 21, 2013 by utilizing the featureselection algorithm proposed in X. Sun, Y. Liu, M. Xu,H. Chen, J. Han, and K. Wang, “Feature selection using dynamic weightsfor classification," Knowledgr--Based Systems, vol. 37, pp. 541—549, 2013.Theproposed method is also compared with three classical classification methods based on the statisticaland probabilistic approaches showing that it is a robust classifier. Số bản sách:
(0)
Tài liệu số:
(1)
|
2
|
A time series forecasting model based on linguistic forecasting rules / Pham, Dinh Phong // Tạp chí Tin học và Điều khiển học = Journal of Computer Science And Cybernetics . - 2021. - tr. 25-44. - ISSN: 1813-9663
Ký hiệu phân loại (DDC): 006 The fuzzy time series (FTS) forecasting models have been sturlied intesively over the pizza-nabpast few years. The existing FTS forecasting models partition the historical data into and assign the fuzzy sets to them by the human expert‘s experience. Hieu et al. propo time series by utilizing the hedge algebras quantification to converse the numerical . Data to the linguistic time series. Similar to the FTS forecasting models, the obtained Ii:- time series can define the linguistic, logical relationships which are used to establish the 32,1; legit relationship groups and form a linguistic forecasting model. In this paper. we propose a 5;- fistu- time series forecasting model based on the linguistic forecasting rules induced from the ; logical relationships instead of the linguistic, logical relationship groups proposed by Hieu. T1»:— experimental studies using the historical data of the enrollments of University of Alabama and the iii; average temperature data in Taipei Show the outperformance of the proposed forecasting Elsi-1‘ over thecounterpart ones. Then, to realize the proposed models in Viet Nam. they are sis; apple-d to thefei'eeasliug problem of the historical data of the average rice production of Viet .from 1990 to
2010.
Số bản sách:
(0)
Tài liệu số:
(1)
|
3
|
|
|
|
|
|