Dòng
|
Nội dung
|
1
|
Removal of Cu2+ from aqueous water by adsorption onto the efficient and recyclable durian Shell-derived activated carbon / Long Giang Bach, Dai-Viet N. Vo, Nguyen Duy Trinh,
Van Thi Thanh Ho, Van Thuan Tran // Applied Mechanics and Materials. - . - Vol. 876 (2018), P.46-51. - ISSN:
Switzerland : Trans Tech Publications, 2018 6 p. Ký hiệu phân loại (DDC): 542 We investigated the use of durian shell-derived activated carbon (DSAC) for the removal of Cu2+. To determine the optimal condition for Cu2+ removal, the response surface methodology (RSM) was used to establish a second-order polynomial model with variables such as Cu2+ concentration (Ci), adsorbent dosage (dDSAC) and pH. With R2 = 0.9847 and P-value < 0.0001, the model was proved to be statistically significant. The RSM based confirmation test revealed that the removal of Cu2+ was maximum (99.6%) at optimal conditions: Ci = 61.6 mg/L, dDSAC = 5.0 g/L and pH = 5.2. Based on calculated R2, data fitness for adsorption isotherms were positioned as follows: Langmuir > Tempkin > Freundlich. In other words, monolayer adsorption was the most favorable behavior with maximum capacity of 76.92 mg/g from Langmuir model. Interestingly, DSAC was reused at least five times without a considerable decrease of Cu2+ removal efficiency. Therefore, durian shell can be used as a highly effective, reusable and promising raw material to fabricate the activated carbon. Số bản sách:
(0)
Tài liệu số:
(1)
|
|
|
|
|