Dòng
|
Nội dung
|
1
|
Cải thiện khả năng phát hiện tấn công mạng bằng kỹ thuật học sâu / Tô Trọng Tín // Tạp chí Khoa học và Công nghệ . - 2018. - Số 1, tr. 7-12. - ISSN:
Ký hiệu phân loại (DDC): Hệ thống phát hiện tấn công mạng (Intrusion Detection System - IDS) là một phần mềm bảo mật được thiết kế để cảnh báo một cách tự động cho các quản trị viên khi có ai đó ho c cái gì đó đang cố gắng xâm nhập hệ thống thông qua các hoạt động nguy hiểm ho c vi phạm chính sách bảo mật. Nhiều nghiên cứu đ áp dụng thành công các thuật toán máy học để hệ thống IDS có khả n ng tự học và cập nhật các cuộc tấn công mới. Nhưng để hạn chế báo động nhầm và t ng khả n ng dự đoán các cuộc tấn công, thì ngoài khả n ng tự quyết định, IDS cần phải có tư duy ph n tích. Một khả n ng mà các nhà nghiên cứu gọi là học sâu. Bài viết này đề cập đến học s u như một hướng tiếp cận mới có thể giúp hệ thống IDS cải thiện độ ch nh xác và t ng tốc độ phân tích khi đầu vào quá lớn. Với việc áp dụng mạng thần kinh s u như mạng đa lớp n (Multilayer Perceptron - MLP) và mạng neural hồi quy (Recurrent Neural Network – RNN) trên tập dữ liệu KDD99 được sử dụng để đánh giá độ ch nh xác (Accuracy), độ l i phân lớp (MSE – Mean Squared Error) và ma trận h n loạn (Confusion Matrix). Hiệu quả đạt được là 98,2% với MLP và 99,04% với RNNs, so với 92,6% của SVM và 88.46% của Naïve Bayes.. Số bản sách:
(0)
Tài liệu số:
(1)
|
2
|
|
|
|
|
|