Dòng Nội dung
1
Cải thiện khả năng phát hiện tấn công mạng bằng kỹ thuật học sâu / Tô Trọng Tín // Tạp chí Khoa học và Công nghệ . - 2018. - Số 1, tr. 7-12. - ISSN:



Ký hiệu phân loại (DDC):
Hệ thống phát hiện tấn công mạng (Intrusion Detection System - IDS) là một phần mềm bảo mật được thiết kế để cảnh báo một cách tự động cho các quản trị viên khi có ai đó ho c cái gì đó đang cố gắng xâm nhập hệ thống thông qua các hoạt động nguy hiểm ho c vi phạm chính sách bảo mật. Nhiều nghiên cứu đ áp dụng thành công các thuật toán máy học để hệ thống IDS có khả n ng tự học và cập nhật các cuộc tấn công mới. Nhưng để hạn chế báo động nhầm và t ng khả n ng dự đoán các cuộc tấn công, thì ngoài khả n ng tự quyết định, IDS cần phải có tư duy ph n tích. Một khả n ng mà các nhà nghiên cứu gọi là học sâu. Bài viết này đề cập đến học s u như một hướng tiếp cận mới có thể giúp hệ thống IDS cải thiện độ ch nh xác và t ng tốc độ phân tích khi đầu vào quá lớn. Với việc áp dụng mạng thần kinh s u như mạng đa lớp n (Multilayer Perceptron - MLP) và mạng neural hồi quy (Recurrent Neural Network – RNN) trên tập dữ liệu KDD99 được sử dụng để đánh giá độ ch nh xác (Accuracy), độ l i phân lớp (MSE – Mean Squared Error) và ma trận h n loạn (Confusion Matrix). Hiệu quả đạt được là 98,2% với MLP và 99,04% với RNNs, so với 92,6% của SVM và 88.46% của Naïve Bayes..
Số bản sách: (0) Tài liệu số: (1)
2
Nghiên cứu và ứng dụng thuật toán YOLOV7 để phân loại cà chua / Nguyễn Văn Mạnh, Lê Văn An, Trần Đức Lương và những người khác... // Tạp chí Khoa học Tài nguyên và Môi trường . - 2024. - tr. 101-111. - ISSN: 0866-7608



Ký hiệu phân loại (DDC): 006.382
Trình bày về nhóm tác giả đã ứng dụng nhận diện cà chua bằng thị giác máy tính thông qua thuật toán YOLOv7. Từ đó đánh giá, phân tích dựa trên dữ liệu cà chua thu thập được. Mô hình nhận diện quả cà chưa đã đạt được độ chính xác 93.3% đối với quả bình thường và đạt 89.1% với quả hỏng trên tập dữ liệu thử nghiệm
Số bản sách: (0) Tài liệu số: (1)