Dòng Nội dung
1
Khai thác mô hình học máy tiên tiến cho dự báo lợi nhuận: Nghiên cứu so sánh giữa Arima và LSTM : Khóa luận tốt nghiệp chuyên ngành Khoa học dữ liệu / Bùi Tiến Sang, Hà Minh Tân hướng dẫn
Tp. Hồ Chí Minh : Đại học Nguyễn Tất Thành, 2024
xiii, 75 tr. : Hình ảnh minh họa ; 29 cm.
Ký hiệu phân loại (DDC): 332.8
Nghiên cứu tận dụng ưu điểm của các học máy tiên tiến để thực hiện dự đoán lợi nhuận trong lĩnh vực tài chính nhằm đưa lại một chính sách hiệu quả nhất. Nghiên cứu này chỉ tập trung vào việc so sánh hiệu suất giữa hai mô hình cụ thể là Arima và LSTM trong quá trình dự đoán của lợi nhuận. Sử dụng các chỉ số quan trọng như MSE, MAE và RMSE để tiến hành một phân tích tổng quan, tập trung vào so sánh kết quả các giá trị của hai mô hình. Cung cấp thông tin rất chi tiết về các mỗi mô hình hoạt động, bao gồm cơ chế của Arima và LSTM tương quan của chúng trong việc dự báo lợi nhuận tài chính. Nghiên cứu sẽ xây dựng, tinh chỉnh cho các mô hình học hỏi trên dữ liệu lịch sử, điều chỉnh các tham số quan trọng để đảm bảo hiệu quả cà tính linh hoạt trong dự báo. Đưa ra đánh giá chất lượng dự báo dựa trên MSE và RMSE, MAE. Kết quả so sánh giữa Arima và LSTM giúp đưa ra kết luận rằng một trong hai có khả năng dự báo tốt hơn trong ngữ cảnh tài chính.
Số bản sách: (1) Tài liệu số: (0)