Dòng
|
Nội dung
|
1
|
|
2
|
Preparation and characterization of advanced PtRu/Ti0.7Mo0.7O2 catalysts for direct methanol fuel cells / Van Thi Thanh Ho, Long Giang Bach, Dai-Viet N. Vo // Applied Mechanics and Materials. - . - Vol. 876 (2018), P.57-63. - ISSN:
Switzerland : Trans Tech Publications, 2018 7 p. Ký hiệu phân loại (DDC): 542 We report the new strategy by investigating the novel Ti0.7Mo0.3O2 material can just as easily be used as a conductive support for PtRu for DMFCs to prevent not only the carbon corrosion but also improved activity of catalyst due to some functional advantages of novel Ti0.7Mo0.3O2 support. The Ti0.7Mo0.3O2 nanoparticle have good crystallinity with well-defined fringes corresponding to the 3.45 Å spacing value of the {101} plane of anatase TiO2, which were good according to the XRD pattern. The BET surface area measurements showed that the Ti0.7Mo0.3O2 possessed 125 m2 g-1 Fig. 3 shows the TEM measurement of Ti0.7Mo0.3O2 nanoparticle and Pt/Ti0.7Mo0.3O2, it can be observed that spherical PtRu alloy particles with an average particle size of 2-4 nm were uniformly anchored on the surface of Ti0.7Mo0.3O2 support. More importantly, we found that there has a strong metal support interaction (SMSI) between the PtRu noble metal and the Ti0.7Mo0.3O2 support material - resulting in facile electron donation from the Ti0.7Mo0.3O2 support to PtRu metal with an ultimate drastic decrease in the d-band vacancy of Pt. Thus, the unique structural features of the Ti0.7Mo0.3O2 support and the PtRu/Ti0.7Mo0.3O2 catalyst appear to provide a suitable combination favoring that promise for the high performance of methanol oxidation, CO-tolerance in DMFCs. Số bản sách:
(0)
Tài liệu số:
(1)
|
3
|
Removal of Cu2+ from aqueous water by adsorption onto the efficient and recyclable durian Shell-derived activated carbon / Long Giang Bach, Dai-Viet N. Vo, Nguyen Duy Trinh,
Van Thi Thanh Ho, Van Thuan Tran // Applied Mechanics and Materials. - . - Vol. 876 (2018), P.46-51. - ISSN:
Switzerland : Trans Tech Publications, 2018 6 p. Ký hiệu phân loại (DDC): 542 We investigated the use of durian shell-derived activated carbon (DSAC) for the removal of Cu2+. To determine the optimal condition for Cu2+ removal, the response surface methodology (RSM) was used to establish a second-order polynomial model with variables such as Cu2+ concentration (Ci), adsorbent dosage (dDSAC) and pH. With R2 = 0.9847 and P-value < 0.0001, the model was proved to be statistically significant. The RSM based confirmation test revealed that the removal of Cu2+ was maximum (99.6%) at optimal conditions: Ci = 61.6 mg/L, dDSAC = 5.0 g/L and pH = 5.2. Based on calculated R2, data fitness for adsorption isotherms were positioned as follows: Langmuir > Tempkin > Freundlich. In other words, monolayer adsorption was the most favorable behavior with maximum capacity of 76.92 mg/g from Langmuir model. Interestingly, DSAC was reused at least five times without a considerable decrease of Cu2+ removal efficiency. Therefore, durian shell can be used as a highly effective, reusable and promising raw material to fabricate the activated carbon. Số bản sách:
(0)
Tài liệu số:
(1)
|
|
|
|
|